1	1	J
(\	j
P	-	
	3	3
•	Ŧ	ŀ
	Ì	
ב		ĺ
-	1	4
		2
	I	
Ć		
ì	•	
•	Ž	
	I	
		7
٢	1	2
	X I	
	エエア	
	ンエンとエンニエン	

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	SF-040122	1	17

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY ASHE

PROJECT DESCRIPTION BRIDGE NO. 122 ON SR 1549 (GARVEY BRIDGE RD.) OVER NORTH FORK NEW RIVER

CONTENTS

SHEET NO.

2, 2A, 2B, 2C

3 4-12 13, 14 **DESCRIPTION**

TITLE SHEET LEGEND

BORING LOCATION PLAN

BORING LOGS, CORE LOGS AND CORE PHOTOGRAPHS

LAB SUMMARY SHEETS

PERSONNEL

SUMMIT

LANE, R.W.

INVESTIGATED BY LANE, R.W.

DRAWN BY HILL, M.J.

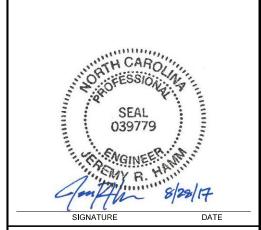
CHECKED BY HUNSBERGER, W.S.

SUBMITTED BY _ FALCON ENG.

DATE AUGUST 2017

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1(99) 707-850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.


CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOL THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEM NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED TO THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO.	SHEET NO.
SF-040122	2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 1 OF 2)

											(PA	4GE	(1 OF 2)										
				SOII	. DE	SCR	IPTI	ON					GRADATION										
BE PENE ACCORD IS E CONSISTE	CONSIDERED TRATED WITH ING TO THE BASED ON TH ENCY, COLOR,	I A CO STAND IE AAS TEXTU	NTINUOUS ARD PENE HTO SYS JRE, MOIST	FLIGHT TRATION EM. BAS URE, AA	POWE TEST SIC DES SHTO O	R AUGE (AASH SCRIPT CLASSIF	R ANI TO T IONS ICATI	O YIEL 206, A GENER ON, AN	D LESS ASTM D ALLY II D OTHE	THAN 100 1586). SOIL NCLUDE THI R PERTINE	I BLOWS PE . CLASSIFI E FOLLOWI NT FACTOR	ER FOOT CATION NG: RS SUCH	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS										
	S MINERALOO VERY STIFF,G	RAY, SIL	TY CLAY, MC	NST WITH	INTER	RBEDDEL	FINE	SAND	LAYERS	HIGHLY PLA	STIC.A-7-6	•	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.										
GENERAL			LEGEN AR MATERIA		ID A			MATERI		CATION			MINERALOGICAL COMPOSITION										
CLASS.	(≤ 35%	PASSING #2	20)		(> 3	5% PAS	SING *	200)		GANIC MATERI	IALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.										
	A-1 A-1-a A-1-b	A-3	A-2-4 A-2			A-4	A-5	A-6	A-7-5 A-7-6	A-1, A-2 A-3	A-4. A-5 A-6. A-7		COMPRESSIBILITY										
SYMB0L							17.1					***************************************	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50										
% PASSING *10	50 MX									GRANULAR	SILT-	MUCK,	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL										
= 40	30 MX 50 MX 15 MX 25 MX		35 MY 35 I	MY 35 MY	35 MY	36 MN	36 MN	36 MN	36 MN	SOILS	CLAY SOILS	PEAT	GRANULAR SILT - CLAY										
MATERIAL	13 114 23 114	ID PIX	33 144 33 1	-1A 33 1-1A	33 14%	30 1111	30 1414	30 1411	30 PM				TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%										
PASSING *40 LL	-		40 MX 41 N							SOILS LITTL			LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% MODERATELY ORGANIC 5 - 10% MO										
PI GROUP INDEX	6 MX	NP Ø	10 MX 10 P	_	11 MN MX	10 MX 8 MX			-	MODE	RATE	HIGHLY ORGANIC	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE GROUND WATER										
USUAL TYPES	STONE FRAGS.	FINE	SILTY	OR CLAYE		SIL			YEY	ORG/ MAT	ANIC	SOILS	▼ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING										
OF MAJOR MATERIALS	GRAVEL, AND SAND	SAND		AND SAI		501			ILS				$lacktriangle$ Static water level after $\underline{24}$ Hours										
GEN. RATING AS SUBGRADE		EXCELL	ENT TO GOO	ID			FAIR T	O POOR		FAIR TO POOR	P00R	UNSUITABLE											
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30													SPRING OR SEEP										
CONSISTENCY OR DENSENESS SOURCESTAND RANGE OF STANDARD RANGE OF UNCONFINED											E OF UNC	ONETNED	MISCELLANEOUS SYMBOLS										
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTI											RESSIVE S	TRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION ST SPI OF ROCK STRUCTURES										
GENERAI GRANUL			VERY L	Ε			4 T	0 10					SOIL SYMBOL Set 1 Det OMT TEST BORING SLOPE INDICATOR INSTALLATION SLOPE INDICATOR INSTALLATION										
MATERIA (NON-CO			MEDIUM DENS VERY D	Ε			10 T 30 T >	0 50			N/A		ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING										
GENERA			VERY S				2 T	2 0 4			< 0.25 0.25 TO		— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD										
SILT-CL MATERIA	AY.		MEDIUM STIF	STIFF				0 8			0.5 TO 1	1.0	TEST BORING MONITORING WELL TEST BORING WITH CORE										
(COHESI			VERY S	TIFF			15 T	0 30			2 TO 4		PIEZOMETER ON SPT N-VALUE										
				XTUF	E O	R GF			ZE				RECOMMENDATION SYMBOLS										
U.S. STD. SII OPENING (M					10 2.00	40 0.42		60 0.25	200 0.075	27Ø 5 Ø.Ø53			UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE SHALLOW SUCLASSIFIED EXCAVATION - UNCLASSIFIED - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIE										
BOULDE (BLDR.)		BBLE		AVEL		COARS SAND (CSE. S)		FINE SAND (F SD	' ;	SILT SL.)	CLAY (CL.)	UNDERCUT ONCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL ABBREVIATIONS										
GRAIN MM			75 3		2.0			0. 25		0.05	0.005	i	AR - AUGER REFUSAL MED MEDIUM YST - VANE SHEAR TE BT - BORING TERMINATED MICA, - MICACEOUS WEA, - WEATHERED										
SIZE IN		OIL		TURE	- CI	ORRE	ΙΔΤ	ION	ΩF	TERMS			CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT										
	MOISTURE S	SCALE		FIEL	D MOIS	STURE					STURE DES	SCRIPTION	CSE COARSE ORG ORGANIC										
(ATT	TERBERG LIN	41157		- SA	SCRIPT TURATI						WET, USU		DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON										
PLASTIC FRANGE	LIQUID	LIMIT	_		T - (W	v)		SEMIS	OLID: F	REQUIRES (DRYING TO		F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS W- MOISTURE CONTENT CBR - CALIFORNIA BEARING										
(PI) PL	PLASTIC	C LIM	т _					ATTAI	N OPTI	MUM MOIS	TURE		HI HIGHLY V - VERY RATIO										
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOIST SL SHRINKAGE LIMIT									; AT OF	R NEAR OP	TIMUM MO	ISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:										
				- DR	Y - (D))				ODITIONAL IMUM MOIS	WATER TO)	CME-45C CLAY BITS X AUTOMATIC MANUAL CME-55 CONTINUOUS FLIGHT AUGER CORE SIZE:										
	1				PLAS	STICI	TY						X 8' HOLLOW AUGERS										
NON	PLASTIC			PL	ASTIC	ITY IN Ø-5	DEX (PI)			RY STRENG VERY LOW		CME-550 HARD FACED FINGER BITS X -N Q										
SLI	CHTLY PLAS CHTLY PLAS CERATELY PL		-			6-15 16-25					SLIGHT MEDIUM	•	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS:										
	HLY PLASTI					OR MC	IRE				HIGH		PORTABLE HOIST X TRICONE 2 15/16* STEEL TEETH HAND AUGER										
					C	OLOR							TRICONE TUNGCARB. SOUNDING ROD										
	TIONS MAY I DDIFIERS SU												X CORE BIT VANE SHEAR TEST										
													1 —										

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

			ROCK DES			TERMS AND DEFINITIONS
ROCK LINE IN SPT REFUSAL BLOWS IN NO	NDICATES IS PEN ON-COAS	THE LEVEL ETRATION BY TAL PLAIN N	AT WHICH NON-COAS A SPLIT SPOON SAI MATERIAL, THE TRAN	DULD YIELD SPT REFUSAL IF TESTED. AN IN TAL PLAIN MATERIAL WOULD YIELD SPT REF MPLER EQUAL TO OR LESS THAN 0.1 FOOT PE SITION BETWEEN SOIL AND ROCK IS OFTEI	USAL. R 60	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA, ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
			THERED ROCK. DIVIDED AS FOLLOWS	•		ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
WEATHERED ROCK (WR)			NON-COASTAL PLAIN 100 BLOWS PER FO	MATERIAL THAT WOULD YIELD SPT N VALU T IF TESTED.	ES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CRYSTALLINE ROCK (CR)			FINE TO COARSE GE WOULD YIELD SPT ONEISS, GABBRO, SCH	MAIN IGNEOUS AND METAMORPHIC ROCK THAT REFUSAL IF TESTED. ROCK TYPE INCLUDES C	GRANITE.	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
NON-CRYSTAL ROCK (NCR)	LINE		FINE TO COARSE OF SEDIMENTARY ROCK	MAIN METAMORPHIC AND NON-COASTAL PLAIN THAT WOULD YEILD SPT REFUSAL IF TESTE S PHYLLITE, SLATE, SANDSTONE, ETC.	D.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
COASTAL PLA SEDIMENTARY (CP)	AIN ROCK		COASTAL PLAIN SEI	IMENTS CEMENTED INTO ROCK, BUT MAY NOT TYPE INCLUDES LIMESTONE, SANDSTONE, CEI	YIELD MENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDE BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
			WEATH	ERING		<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
FRESH	HAMMER	IF CRYSTALL	INE.	MAY SHOW SLIGHT STAINING. ROCK RINGS UN		DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
VERY SLIGHT (V SLI.)	CRYSTA		KEN SPECIMEN FACE S	OME JOINTS MAY SHOW THIN CLAY COATINGS I HINE BRIGHTLY. ROCK RINGS UNDER HAMMER BL		DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP MEASURED CLOCKWISE FROM NORTH.
SLIGHT (SLI.)	ROCK G	ENERALLY FRE	SH, JOINTS STAINED	ND DISCOLORATION EXTENDS INTO ROCK UP TO N GRANITOID ROCKS SOME OCCASIONAL FELDSP		\underline{FAULT} - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
MODERATE				STALLINE ROCKS RING UNDER HAMMER BLOWS. COLORATION AND WEATHERING EFFECTS. IN		FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
(MOD.)	GRANITO	ID ROCKS, MO	ST FELDSPARS ARE DI	ILL AND DISCOLORED, SOME SHOW CLAY. ROCK H		PARENT MATERIAL.
		RESH ROCK.	HAMMER BLUWS AND SI	IOWS SIGNIFICANT LOSS OF STRENGTH AS COMP	AKED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL						FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGT (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.						JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
CEVEDE			ELD SPT REFUSAL	CTAINED DOCK FARRIC CLEAR AND EVIDENT RE		LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
SEVERE (SEV.)	REDUCE	IN STRENGT	H TO STRONG SOIL. I	STAINED. ROCK FABRIC CLEAR AND EVIDENT BE GRANITOID ROCKS ALL FELDSPARS ARE KAOLI		ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
	IF TES	ED, WOULD YI	ELD SPT N VALUES >			MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERY SEVERE (V SEV.)	BUT MA	SS IS EFFECT	IVELY REDUCED TO SE	STAINED. ROCK FABRIC ELEMENTS ARE DISCER DIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK WEATHERED TO A DEGREE THAT ONLY MI	ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
				N. IF TESTED, WOULD YIELD SPT N VALUES <		RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
COMPLETE	SCATTE			DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL BE PRESENT AS DIKES OR STRINGERS. SAPROL		ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH O ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
			ROCK HA	RDNESS		SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARE
VERY HARD			ED BY KNIFE OR SHAR 5 OF THE GEOLOGIST'S	P PICK. BREAKING OF HAND SPECIMENS REQUIRE PICK.	S	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
HARD	CAN BE		BY KNIFE OR PICK ONL	Y WITH DIFFICULTY. HARD HAMMER BLOWS REO	UIRED	TELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
MODERATELY HARD	EXCAVA	TED BY HARD	BLOW OF A GEOLOGIS	JGES OR GROOVES TO 0.25 INCHES DEEP CAN E T'S PICK. HAND SPECIMENS CAN BE DETACHED	BE	$\underline{\text{SLICKENSIDE}}$ - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
MEDIUM	CAN BE		GOUGED 0.05 INCHES	DEEP BY FIRM PRESSURE OF KNIFE OR PICK PI		STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SO WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
HARD	POINT (F A GEOLOGI	ST'S PICK.	ICES I INCH MAXIMUM SIZE BY HARD BLOWS OF		TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOFT	FROM C	HIPS TO SEVE		WIFE OR PICK. CAN BE EXCAVATED IN FRAGMEN BY MODERATE BLOWS OF A PICK POINT. SMALL, RE.		STRATA CORE RECOVERY ISREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
VERY SOFT	CAN BE OR MOR	CARVED WITH	KNIFE. CAN BE EXCA	WATED READILY WITH POINT OF PICK. PIECES I FINGER PRESSURE. CAN BE SCRATCHED READI		LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED B THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
	FINGERN		othic '	PERSONA		TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
TERM	RACT	URE SPA	CING SPACING	BEDDING TERM THICKNES	:c	BENCH MARK:
VERY WID	E		THAN 10 FEET	VERY THICKLY BEDDED 4 FEET		BORING ELEVATIONS COLLECTED USING *040122_Is_tnl.tin" DATED 3/23/2016. ELEVATION: FEE
WIDE MODERATE	וא נוטפ		TO 10 FEET TO 3 FEET	THICKLY BEDDED 1.5 - 4 FE THINLY BEDDED 0.16 - 1.5 F		
CLOSE		0.16	5 TO 1 F00T	VERY THINLY BEDDED 0.03 - 0.16	FEET	NOTES:
VERY CLO	SE	LESS ⁻	THAN 0.16 FEET	THICKLY LAMINATED 0.008 - 0.03 THINLY LAMINATED < 0.008 F	FEET	FIAD - FILLED IMMEDIATELY AFTER DRILLING

<u>TERM</u>	SPACING	<u>IERM</u>	THICKNESS
VERY WIDE	MORE THAN 10 FEET	VERY THICKLY BEDDED	4 FEET
WIDE	3 TO 10 FEET	THICKLY BEDDED	1.5 - 4 FEET
MODERATELY CLOSE	1 TO 3 FEET	THINLY BEDDED	0.16 - 1.5 FEET
CLOSE	0.16 TO 1 FOOT	VERY THINLY BEDDED	0.03 - 0.16 FEET
VERY CLOSE	LESS THAN 0.16 FEET	THICKLY LAMINATED	0.008 - 0.03 FEET
		THINLY LAMINATED	< 0.008 FEET

INDURATION

FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS: GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER. MODERATELY INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: INDURATED DIFFICULT TO BREAK WITH HAMMER. SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.

DATE: 8-15-14

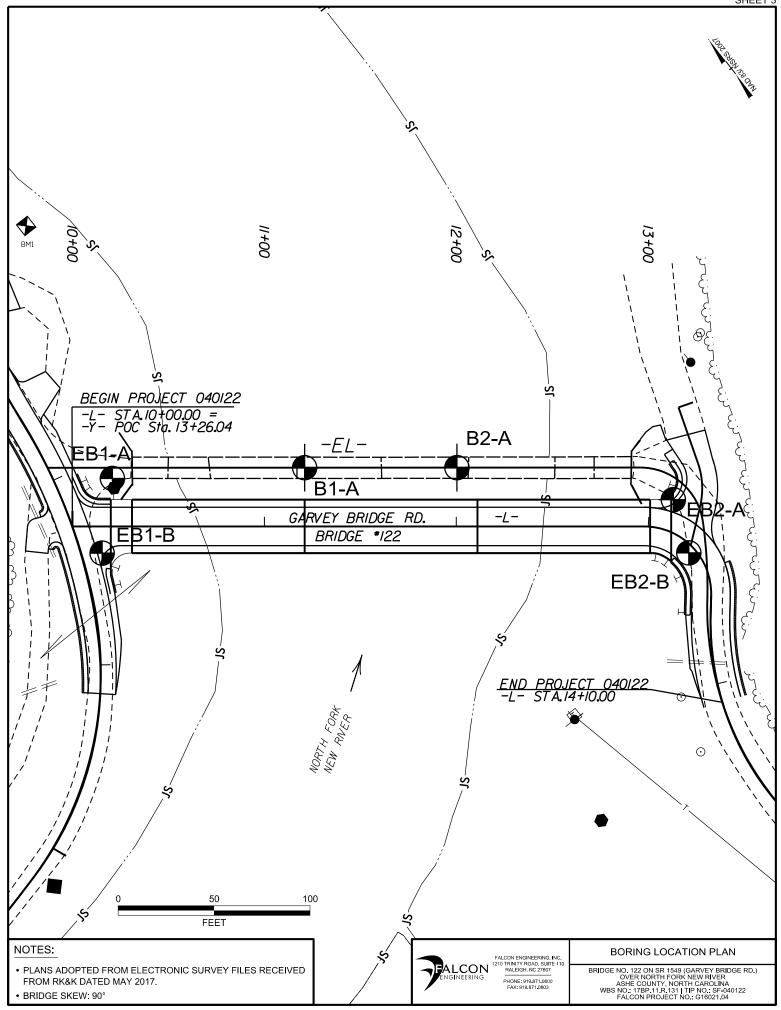
SF-040122 **2B**

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

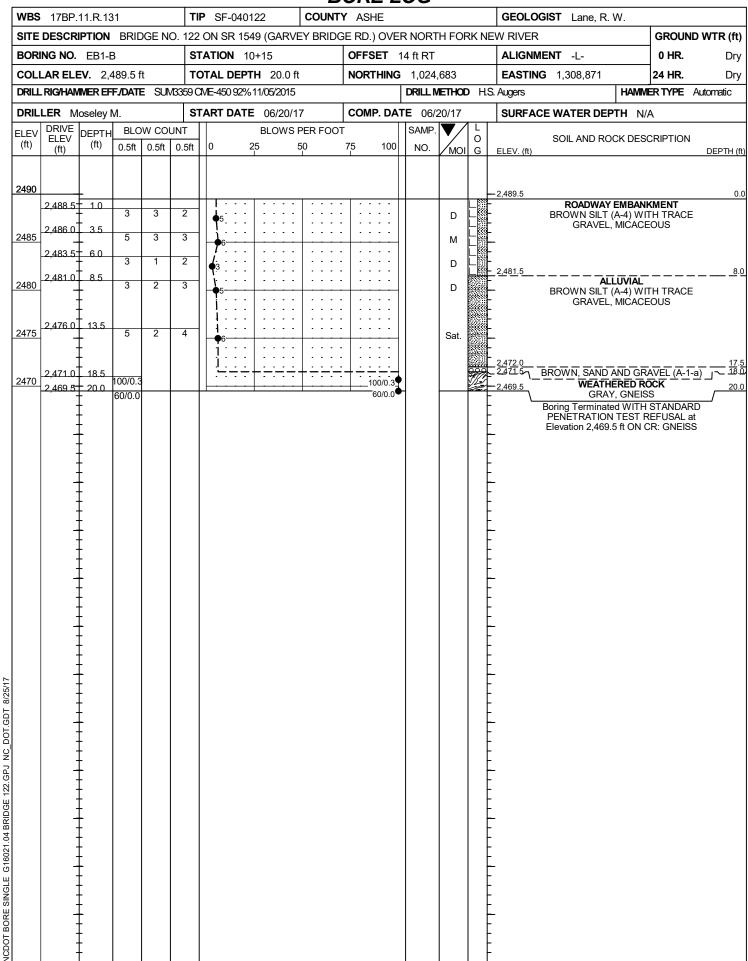
SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSL) TARLES

SUPPLEMENTAL LEGEND, GEOLOG FROM AASHTO LRFD BRIDGE I AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joint	DES.	IGN SPE	CIFICATI	ONS (PAC	I) TABLE GE 1 OF	S' 2)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces	COOD Rough, slightly weathered, iron stained Surfaces	Y FAIR D Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	S	90			N/A	N/A
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	ROCK PIECE	80	70 60			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	RLOCKING OF			50		
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	INTE			40	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECREASING				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes		N/A	N/A			10

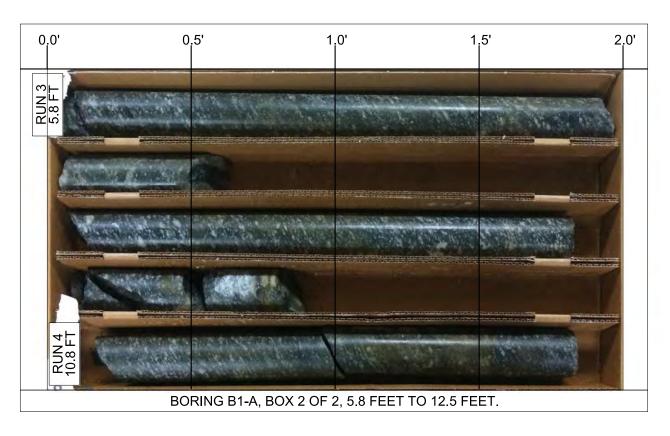

PROJECT REFERENCE NO.	SHEET NO.
SF-040122	2C

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION

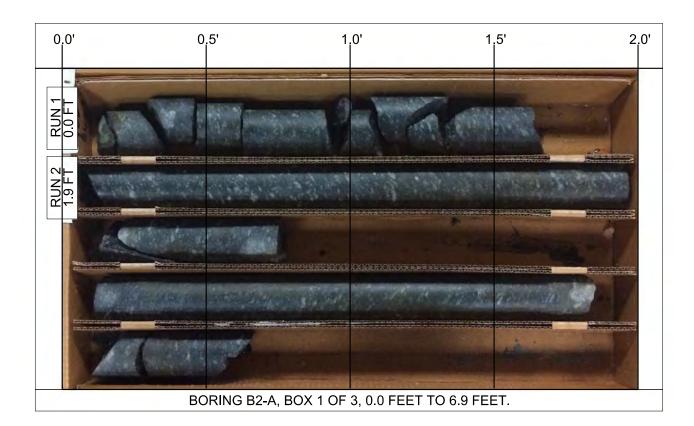
SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 2 OF 2)

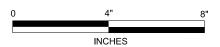
FROM AASHTO LRFD BRIDGE DESIGN AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def	SPECIF	ICATION	S (PAGE	2 OF 2	?)
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)					
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
COMPOSITION AND STRUCTURE					, , ,
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with thin inter- layers of siltstone in similar amounts D. Siltstone or silty shale with sand- stone layers stone layers layers		50 B 40	C [E	
C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.			\$		10
─────────────────────────────────────					DATE: 8-19-16

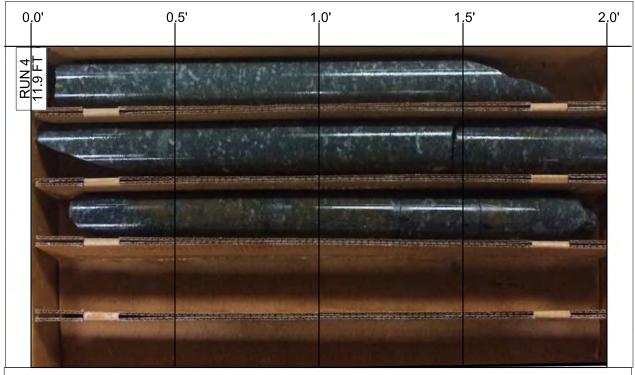


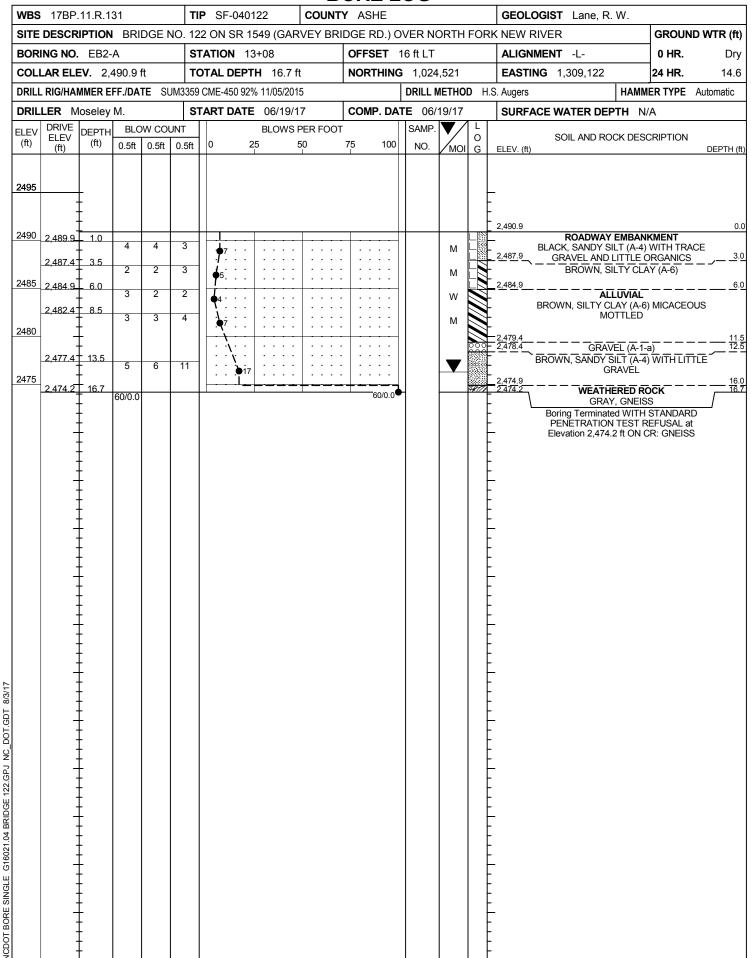
								В	ORE I		G							
WBS 1	7BP.11.R.1	31		TI	P SF-04	0122	COL	JNTY	/ ASHE					GEOLOGI	ST Lane, R.	W.		
SITE DE	SCRIPTION	I BRID	GE NO	. 122	ON SR 1	549 (GAF	RVEY BR	RIDG	E RD.) OV	ER N	IORTH	H FOF	RK NI	EW RIVER			GROUND	WTR (ft
BORING	NO. EB1	-A		S	TATION	10+21			OFFSET	25 f	t LT			ALIGNME	NT -L-		0 HR.	Dry
COLLAF	R ELEV. 2	,490.0 f	t	TO	OTAL DEI	PTH 21.	8 ft		NORTHIN	G 1	,024,7	710		EASTING	1,308,899		24 HR.	FIA
DRILL RIC	G/HAMMER E	FF./DATI	E SUM	3359 C	DME-450 92	%11/05/20)15			DF	RILL ME	ETHO) H.S	S. Augers		HAMIV	ERTYPE A	utomatic
DRILLEI	R Moseley	M.		S	TART DA	TE 06/2	1/17		COMP. DA	ΑΤΕ	06/2	1/17		SURFACE	WATER DEF	PTH N	'A	
-[ft] El	RIVE LEV (ft) DEPTI (ft)	0.5ft	W COU	NT 0.5ft	0	BLOW 25	VS PER F 50		75 100	.	AMP. NO.	MOI	L O G	ELEV. (ft)	SOIL AND RO	OCK DES	CRIPTION	DEPTH (
2,4 2485	489.0 1.0 486.5 3.5 484.0 6.0	5 5	3 7	2	5							D D		2,490.0 BR	ROADWAY OWN-TAN, SA LITTL		_T (A-4) WIT	·H
2,4	484.0 6.0 481.5 8.5 476.5 13.5	6	3	3	•6 •8 .1							D M		- - - - - <u>2,478.0</u>		LŪVĪĀL		12
2475	476.5 13.5 + + + + 471.5 18.5	100/0.5	1	4	5	-			100/0.5	- -		M	000	- - 2,473.5 - 2,472.5 BF	ROWN, SAND	ACEOUS AND GR	AVEL (A-1-a	<u>1</u>
	468 2 21 8	60/0.0							60/0.0					F	oring Terminate PENETRATION Elevation 2,468	ed WITH	STANDARE REFUSAL at	

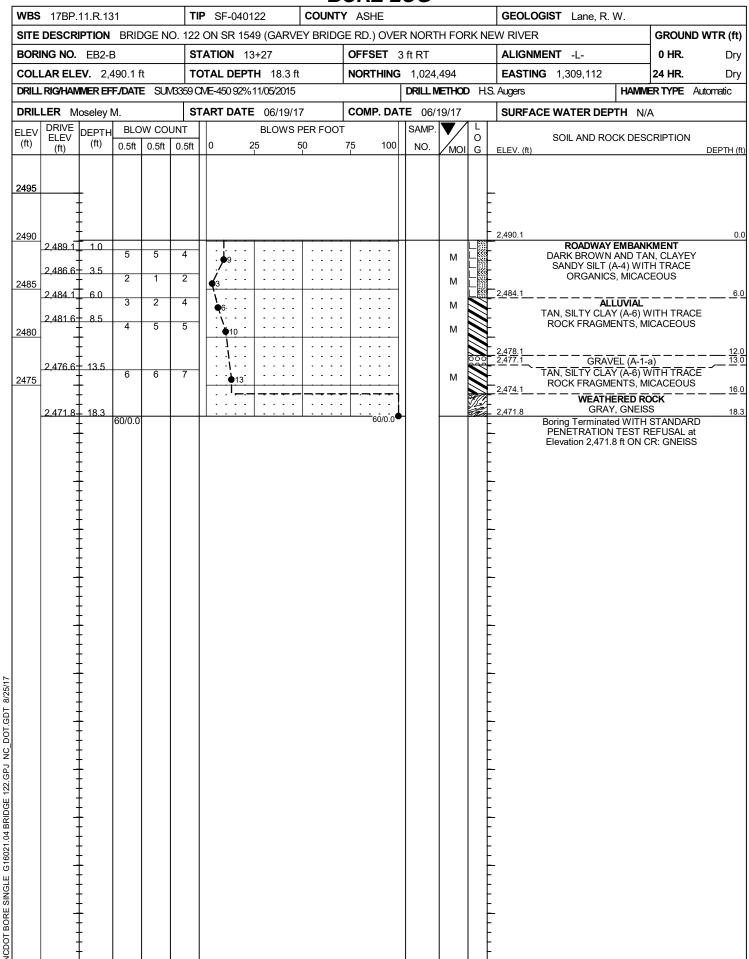
					I						RE L	<u>UG</u>									
WBS 17						SF-04			OUNT				_	GEOLOGIST Lane, R. W.							
			BRIL	JGE NO.			-	RVEY	BKIDO	_	-	R NORTH FORK		ALIGNMENT -L-					GROUND WTR (ft)		
BORING					 		11+21			+	FSET		-					0 HR.	N//		
COLLAR							PTH 12. 2%11/05/20			NC	RIHING	1,024,653 DRILL METHOD		ASTING	1,308	3,982	LIANIN	24 HR.	N// Automatic		
				= SUVISS						T = 6									Autorratic		
DRILLER			VI.		-		TE 06/2			CC	JMP. DA	TE 06/20/17	St	JRFACI	= WAIL	EK DEI	PTH 2.	/tt			
CORE SIZ	LINI			DRILL	RI	JN	N 12.5 ft		ATA	-											
(ft) EL	EV ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	Ö G	ELEV. (it)	DESC	RIPTIO	N AND F	REMARI	KS		DEPTH		
	69.9 69.17	0.0 : 0.8 - -	0.8 5.0	3:02/0.8 1:48/1.0 2:10/1.0 3:34/1.0	(0.5) 63% (5.0) 100%	(0.0) 0% (3.8) 76%		(5.5) 95%	(3.8) 66%		 - - -	FRESH, HARD,	, GRAY	SI	HITE, G PACING	SNEISS,		FRACTU	RE		
2,46	64.1	5.8	F 0	4:32/1.0 2:32/1.0			RS-1	(6.7)	(C 4)		2,464.1	EDECH HARD (= 95%, F				TI EV CL))		
	‡		5.0	4:11/1.0 3:48/1.0	(5.0) 100%	(4.7) 94%		(6.7) 100%	96%		-	FRESH, HARD, (TO CL	OSE F	RACTUR	RE SPA	CING	TLEY CL	JSE		
		10.8	1.7	3:58/1.0 3:46/1.0 3:38/1.0 5:55/1.0	(1.7)	(1.7)					<u>-</u> -		REC =	: 100%, I	RQD = 9	96%, GS	SI =80				
2,45	57.4+ +	12.5		2:26/0.7	100%	100%	┨				- 2,457.4 -	Boring Ter	rminate	ed at Elev	vation 2,	457.4 ft	IN CR: C	SNEISS	12		
		_																			






									C	O F	RE L	<u>UG</u>							
	17BP.					SF-04			OUNT					GEOLOGIST Lane, R. W.					
			BRID	OGE NO.			· · ·	RVEY	BRIDG	_		R NORTH FO	RK NEV		_	GROUND WTR (ft)			
BOR	NG NO.	B2-A			STA	TION	12+00			OF	SET (31 ft LT		ALIGNME	NT -L-		0 HR.	N/A	
	LAR ELI						PTH 16.			NO	RTHING	1,024,604			1,309,044		24 HR.	N/A	
DRILL	. RIG/HAN	/IMER EF	F./DATI	E SUMB3	59 CME	-450 92	%11/05/20)15				DRILL METHO	D H.S.	Augers		HAMI	VIER TYPE	Automatic	
DRIL	LER M	loseley l	М.		STAI	RT DA	TE 06/2	1/17		CO	MP. DA	TE 06/21/17		SURFACE	WATER DI	EPTH 1	.3ft		
COR	E SIZE	NQ					1 16.9 f		· ^ T ^										
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	RQD (ft) %	L O G	ELEV. (t)	DE	SCRIPTION	AND REMA	RKS		DEPTH	
471.2	(ft)	6.9	1.9 5.0 5.0		(1.6) 84% (5.0) 100% (5.0) 100%	(0.0) 0% (4.1) 82%	NO.	(ft) % (1.6) 84%	(0.0) 0% (13.8)		-	FRESH, HAR	RD, GRAY RI BH, HARD MODERA RE	CRYSTA / AND WHIT FRACTU EC = 84%, R D, GRAY ANI NTLEY CLOS C = 100%, R	LLINE ROCK	VERY CLO GI =55 NEISS, CL RE SPACI	OSE TO NG		





BORING B2-A, BOX 3 OF 3, 11.9 FEET TO 16.9 FEET.

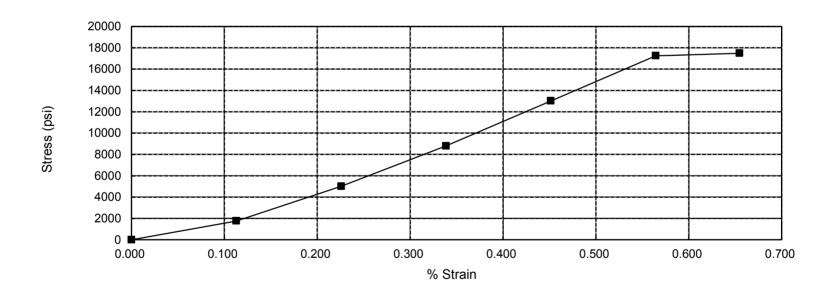
UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS

Performed in General Accordance with ASTM D7012

July 7, 2017

Project Name: Ashe Bridge 122 Project Number: G16021.04

 Sample ID.: RS-1
 Length (in.): 4.43


 Location: B-01
 Diameter (in.): 1.87

 Depth (ft): 5.4-5.7
 Area (in²): 2.746

L/D 2.37 Unit Weight (pcf): 181.0

Compressive Strength (psi): 17490 Time to Failure, mins:sec: 6:15

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.113	4870	1770	1,568,220
0.010	0.226	13800	5020	2,223,860
0.015	0.339	24180	8800	2,598,933
0.020	0.451	35750	13020	2,883,930
0.025	0.564	47390	17250	3,056,700
0.029	0.655	48040	17490	2,671,748

*Young's modulus is calculated using the secant modulus at each data point per Figure 2 (C) in ASTM D 7012

John Sailly

NCDOT CERT No. 105-03-0803

BRIDGE 127

RS-1

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMENS

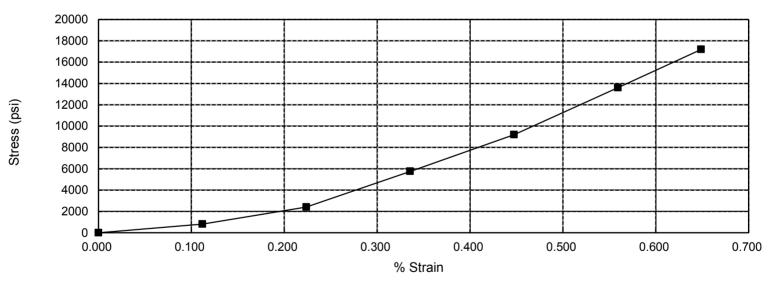
Performed in General Accordance with ASTM D7012

July 7, 2017

Project Name: Ashe Bridge 122 Project Number: G16021.04

 Sample ID.: RS-2
 Length (in.): 4.47

 Location: B-02
 Diameter (in.): 1.87


 Depth (ft): 7.3-7.8
 Area (in²): 2.746

L/D 2.39 Unit Weight (pcf): 187.0

Compressive Strength (psi): 17190

Time to Failure, mins:sec: 6:10

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.112	2260	820	733,080
0.010	0.224	6660	2420	1,081,740
0.015	0.336	15830	5760	1,716,480
0.020	0.447	25260	9200	2,056,200
0.025	0.559	37370	13610	2,433,468
0.029	0.649	47200	17190	2,649,631

*Young's modulus is calculated using the secant modulus at each data point per Figure 2 (C) in ASTM D 7012

John Sailly

NCDOT CERT No. 105-03-0803

